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THIN DOMAINS WITH DOUBLY OSCILLATORY BOUNDARY †

JOSÉ M. ARRIETA AND MANUEL VILLANUEVA-PESQUEIRA.

Abstract. We consider a 2-dimensional thin domain with order of thickness ε which presents oscillations
of amplitude also ε on both boundaries , top and bottom, but the period of the oscillations are of different

order at the top and at the bottom. We study the behavior of the Laplace operator with Neumann boundary

condition and obtain its asymptotic homogenized limit as ε → 0. We are interested in understanding how
this different oscillatory behavior at the boundary, influences the limit problem.

1. Introduction

In this paper, we analyze the behavior of the solutions of the Laplace equation with homogeneous Neumann
boundary conditions 

−∆wε + wε = f ε in Rε

∂wε

∂N ε
= 0 on ∂Rε

(1.1)

with f ε ∈ L2(Rε) and N ε is the unit outward normal to ∂Rε. The domain Rε is a two dimensional thin
domain which presents a highly oscillatory behavior at the boundary and it is given as the region between
two oscillatory functions, that is,

Rε =
{

(x1, x2) ∈ R2 | x1 ∈ (0, 1), −ε h(x1/ε
α) < x2 < ε g(x1/ε)

}
, with α > 1. (1.2)

where g, h : R→ R are C1 periodic functions with period L1 and L2 respectively (see Figure 1). Moreover,
there exist constants h0 ≥ 0 and h1, g0, g1 > 0 such that 0 ≤ h0 ≤ h(·) ≤ h1, and 0 < g0 ≤ g(·) ≤ g1.

Observe that both the amplitude and period of the oscillations at the upper boundary, given by εg(x/ε)
are of the same order as the thickness of the domain. But, for the lower boundary, which is given by εh(x/εα),
the amplitude is of the same order ε, while the period is of the order of εα, which means that we have much
more oscillations at the bottom than at the top boundary. order of the lower oscillations is large than the
order of the amplitude and height of the thin domain Rε with respect to the small parameter ε.

The existence and uniqueness of solutions for problem (1.1) for each ε > 0, is guaranteed by Lax-Milgram
Theorem. We will analyze the asymptotic behavior of the solutions as ε→ 0.

Since the domain is thin, Rε ⊂ (0, 1) × (−εh(·), εg(·)), approaching the interval (0, 1), it is reasonable to
expect that the family of solutions will converge to a function of just one variable and that this function will
satisfy certain elliptic equation in one dimension with some boundary conditions. As a matter of fact, if the
function hε(·) is independent of ε, say hε(·) ≡ 0, the limit equation is given by{

−q0wxx + w = f(x), x ∈ (0, 1)

w′(0) = w′(1) = 0
(1.3)

where q0 = 1
|Y ∗|

∫
Y ∗

{
1− ∂X

∂y1
(y1, y2)

}
dy1dy2, and X is a convenient auxiliary harmonic function defined in

the representative basic cell Y ∗ = {(y1, y2) ∈ R2 | 0 < y1 < l, 0 < y2 < G(y1)}.
The purely periodic case can be addressed by somehow standard techniques in homogenization theory, as

accomplished in [1, 2]. See [5, 9] for general references in homogenization and [7] for reticulated structures.
Observe that in this case the extension operators are very important for the convergence proof.

Key words and phrases. thin domains, oscillatory boundary, homogenization.
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Figure 1. Thin domain Rε

Moreover, if we assume that gε(·) is independent of ε, say gε(·) = g(·), and h0 = minx∈R{h(x)} then the
variational formulation of the limit problem is:∫ 1

0

{(
g(x) + h0

)
wx(x)ϕx(x) + p(x)ω(x)ϕ(x)

}
dx =

∫ 1

0

f̂(x)ϕdx, ∀ϕ ∈ H1(0, 1) (1.4)

where p(x) = g(x) + 1
L2

∫ L2

0
h(s) ds, for all x ∈ (0, 1), and the function f̂ ε(x) =

∫ g(x)

−hε(x)
f(x, y) dy satisfies

that f̂ ε ⇀ f̂ , w-L2(0, 1). We refer to [3] for details. In this work, we want to analyze the case where the
thin domain is a region between two functions with different order of the oscillations.

Our case is a combination of these two cases since both gε and hε are present. And we want to understand
the effect of both terms at the same time in the limit equation. Notice that the techniques used to solve
each case separately are different so we will need to combine both techniques to get the limit problem in our
case. The main difference of the present work in relation to previous existing work in the literature, see for
instance [6, 8, 4] and references therein, is that we allow two different order of oscillations in the boundary
of the thin domain.

In Section 2 we state the notation and the problem that we will study. Furthermore, we are going to
construct an extension operator that will be very important in the proof of the convergence result. Finally,
we state the main convergence result.

In Section 3 we rigorously prove the convergence result. In order to do so, we combine two different
techniques: we use an extension operator in the upper boundary and we define suitable rectangles in the
lower boundary to apply the estimates that we obtained in Lemma 3.1 .

2. Notation and statement of main result

To study the convergence of the solutions of (1.1) we first perform the change of variables (x, y)→ (x, εy),
which transforms the domain Rε into the domain Ωε

Ωε =
{

(x1, x2) ∈ R2 | x1 ∈ (0, 1), −h(x1/ε
α) < x2 < g(x1/ε)

}
. (2.1)

Under this transformation, we obtain the equivalent linear elliptic problem
−∂

2uε

∂x1
2 −

1
ε2
∂2uε

∂x2
2 + uε = f ε in Ωε,

∂uε

∂x1
νε1 +

1
ε2
∂uε

∂x2
νε2 = 0 on ∂Ωε,

(2.2)

where f ε ∈ L2(Ωε) satisfies ‖f ε‖L2(Ωε) ≤ C, for some C > 0 independent of ε, and νε = (νε1, ν
ε
2) is the

outward unit normal to ∂Ωε. Observe that Ωε is not a thin domain anymore but there appears a factor 1/ε2

in front of the derivative in the x2. Moreover, the domain has very wild oscillatory behavior at the top and
bottom boundary.

For the analysis we will construct an extension operator for functions defined in the set Ωε, but which will
extend the function only over the upper part of the boundary. Hence, let us consider the following open set:

Ω̃ε =
{

(x1, x2) ∈ R2 | x1 ∈ (0, 1), −h(x1/ε
α) < x2 < g1

}
. (2.3)

Lemma 2.1. With the notation above, there exists an extension operator

Pε ∈ L(Lp(Ωε), Lp(Ω̃ε)) ∩ L(W 1,p(Ωε), W 1,p(Ω̃ε))
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such that for any ϕ ∈ W 1,p(Ωε),

||Pεϕ||Lp(eΩε) ≤ K||ϕ||Lp(Ωε),

∥∥∥∥∂Pεϕ∂x2

∥∥∥∥
Lp(eΩε) ≤ K

∥∥∥∥ ∂ϕ∂x2

∥∥∥∥
Lp(Ωε)

(2.4)

and
∥∥∥∥∂Pεϕ∂x1

∥∥∥∥
Lp(eΩε) ≤ K

{∥∥∥∥ ∂ϕ∂x1

∥∥∥∥
Lp(Ωε)

+ η(ε)
∥∥∥∥ ∂ϕ∂x2

∥∥∥∥
Lp(Ωε)

}
(2.5)

(2.6)

where 1 ≤ p ≤ ∞, K a constant independent of ε and η(ε) = supx∈I{|g′ε(x)|}.

Proof. The extension operator is constructed with a reflection procedure over the upper boundary, as in
[1]. �

Now, we state the convergence result:

Theorem 2.2. Assume that f ε ∈ L2(Ωε) satisfies ‖f ε‖L2(Ωε) ≤ C with C independent of the parameter ε
and that there exists f̂ ∈ L2(0, 1) such that f̂ ε ⇀ f̂, w − L2(0, 1), where f̂ ε(x1) ≡

∫ g1
−h(x1/εα)

f̃ ε(x1, x2) dx2.
Let uε be the unique solution of (2.2). Then, there exists u0 ∈ H1(0, 1) such that if Pε is the extension
operator constructed in Lemma 2.1, we have ‖Pεuε − u0‖L2(eΩε) → 0 and u0 is the unique weak solution of
the Neumann problem∫ 1

0

{
q̂
∂u0

∂x1

∂ϕ

∂x1
+ (
|Y ∗|
L1

+ p)u0 ϕ
}
dx1 =

∫ 1

0

f̂ ϕ dx1, ∀ϕ ∈ H1(0, 1). (2.7)

where Y ∗ is the basic cell

Y ∗ = {(y1, y2) ∈ R2 : 0 < y1 < L1 and − h0 < y2 < g(y1)}.

The homogenized constant coefficients are defined by

q̂ ≡
∫ g1

−h0

q(s) ds =
1
L1

∫
Y ∗

{
1− ∂X

∂y1
(y1, y2)

}
dy1dy2, p =

1
L2

∫ L2

0

h(s)ds− h0, (2.8)

where X is the unique solution (up to constants) which is L1-periodic in the first variable, of the problem:

−∆X = 0 in Y ∗

∂X

∂N
= 0 on B2

∂X

∂N
= − g′(y1)√

1 + g′(y1)2
on B1

(2.9)

B0 is the lateral part of the boundary, B1 is the upper boundary and B2 is the lower boundary of ∂Y ∗.

Remark 2.3. If the non homogeneous term f ε(x1, x2) is a fixed function depending only on the first variable,
that is, f ε(x1, x2) = f(x1), it is easy to see that f̂(x1) = ( |Y

∗|
L1

+p)f(x1) and therefore, (2.7) is the variational
version of 

− q̂
|Y ∗|
L1

+ p
wxx + w = f(x), x ∈ (0, 1)

w′(0) = w′(1) = 0
(2.10)

Notice that in case h(·) ≡ 0, then p = 0 and q̂
|Y ∗|/L1

= 1
|Y ∗|

∫
Y ∗

(1− ∂X
∂y1

) = q0 and we recover (1.3).



4 J. M. ARRIETA AND M. VILLANUEVA-PESQUEIRA

3. Proof of the main result

The variational formulation of (2.2) is: find uε ∈ H1(Ωε) such that∫
Ωε

{∂uε
∂x1

∂ϕ

∂x1
+

1
ε2
∂uε

∂x2

∂ϕ

∂x2
+ uεϕ

}
dx1dx2 =

∫
Ωε
f εϕdx1dx2, ∀ϕ ∈ H1(Ωε). (3.1)

Taking ϕ = uε in expression (3.1) and using that ‖f ε‖L2(Ωε) ≤ C, we easily obtain the a priori bounds

‖uε‖L2(Ωε),
∥∥∥∂uε
∂x1

∥∥∥
L2(Ωε)

and
1
ε

∥∥∥∂uε
∂x2

∥∥∥
L2(Ωε)

≤ C. (3.2)

If we denote by ˜ the standard extension by zero and by χε the characteristic function of Ωε, we may
write (3.1) as

∫
Ω0

{ ∂̃uε
∂x1

∂ϕ

∂x1
+

1
ε2
∂̃uε

∂x2

∂ϕ

∂x2

}
+
∫

eΩε−
{ ∂̃uε
∂x1

∂ϕ

∂x1
+

1
ε2
∂̃uε

∂x2

∂ϕ

∂x2

}
+
∫

eΩε χ
εPεu

εϕ =
∫

eΩε χ
εf εϕ ∀ϕ ∈ H1(Ωε), (3.3)

where we divide the domain Ω̃ε in two parts: one of them, Ω̃ε−, carries all the oscillations and the other Ω0

is a fixed domain, that is,

Ω̃ε− = {(x1, x2) ∈ R2|x1 ∈ (0, 1), −h(x1/ε
α) < x2 < −h0}

Ω0 = {(x1, x2) ∈ R2|x1 ∈ (0, 1), −h0 < x2 < g1}. (3.4)

Before we start with the proof of the main result, let us state some relevant estimates on the solutions of
certain elliptics problems, posed in rectangles of the type

Qε = {(x, y) ∈ R2 | − εα < x < εα, 0 < y < 1}, with α > 1. (3.5)

As a matter of fact, for u0(·) ∈ H1(−εα, εα), we define the function uε(x, y) as the unique solution of
−∂

2uε

∂x2 −
1
ε2
∂2uε

∂y2 = 0 in Qε,

u(x, 0) = u0(x), on Γε,
∂u

∂ν
= 0, on ∂Qε \ Γε

(3.6)

where ν is the outward unit normal to ∂Qε and Γε = {(x, 0) ∈ R2 | − εα < x < εα}.
We have the following,

Lemma 3.1. With the notation from above, if we denote by ū0 the average of u0 in Γε, that is ū0 =
1

2εα

∫ εα
−εα u0(x) dx then there exists a constant C, independent of ε and u0, such that∫ 1

0

∫ εα

−εα
|uε(x, y)− ū0|2 dxdy ≤ Cεα−1‖u0‖2L2(−εα,εα) (3.7)

and ∥∥∥∥∂uε∂x

∥∥∥∥2

L2(Qε)

+
1
ε2

∥∥∥∥∂uε∂y
∥∥∥∥2

L2(Qε)

≤ Cεα−1

∥∥∥∥∂u0

∂x

∥∥∥∥2

L2(−εα,εα)

. (3.8)

Proof. See [3] for details. �

Proof of Theorem 2.2. The idea is to pass to the limit in (3.3) constructing appropriate test functions. First,
we study the limit of the different functions that form the integrands of (3.3).

(a). Limit in the extended functions. Using the a priori estimate (3.2) and the results from Lemma
2.1 we obtain that Pεuε|Ω0 ∈ H1(Ω0) and we can extract a subsequence of {Pεuε|Ω0} ⊂ H1(Ω0), denoted
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again by Pεuε, such that
Pεu

ε ⇀ u0 w −H1(Ω0)
∂Pεu

ε

∂x2
→ 0 s− L2(Ω0)

(3.9)

as ε→ 0 for some u0 ∈ H1(Ω0).
A consequence of the limits (3.9) is that u0(x1, x2) does not depend on the variable x2. Moreover, we have

that the restriction of Pεuε to the coordinate axis x1 converges to u0. That is, Pεuε|Γ → u0 s−Hs(Γ) for all
s ∈ [0, 1/2) where Γ = {(x1, 0) ∈ R2 |x1 ∈ (0, 1)}. Consequently, we obtain ‖Pεuε − u0‖L2(Γ) → 0 as ε→ 0.
In view of the above limit, one has the L2−convergence of Pεuε to u0, that is

‖Pεuε − u0‖L2(eΩε) → 0 as ε→ 0. (3.10)

In fact, on the one hand we have

‖Pεuε(x1, 0)− u0(x1)‖2
L2(eΩε) =

∫ 1

0

∫ g1

−h(x1/εα)

|Pεuε(x1, 0)− u0(x1)|2 dx2dx1

≤ C(g, h) ‖Pεuε − u0‖L2(Γ) → 0 as ε→ 0.

On the other hand,

‖Pεuε(x1, x2)− Pεuε(x1, 0)‖2
L2(eΩε) =

∫ 1

0

∫ g1

−h(x1/εα)

|Pεuε(x1, x2)− Pεuε(x1, 0)|2 dx1dx2

≤
∫ 1

0

∫ g1

−h(x1/εα)

(∫ x2

0

∣∣∣∣∂Pεuε∂x2
(x1, s)

∣∣∣∣2 ds
)
|x2| dx2dx1 ≤ C(h, g)

∥∥∥∥∂Pεuε∂x2

∥∥∥∥2

L2(eΩε) ≤ ε Ĉ(h, g)→ 0 as ε→ 0.

Finally

‖Pεuε − u0‖L2(eΩε) ≤ ‖Pεuε(x1, x2)− Pεuε(x1, 0)‖L2(eΩε) + ‖Pεuε(x1, 0)− u0(x1)‖L2(eΩε) → 0,

as ε→ 0.

(b). Limit in the tilde functions.
From the a priori estimates (3.2) we know that there exists a function ξ∗ ∈ L2(Ω0), such that, up to

subsequences
∂̃uε

∂x1
⇀ ξ∗ w − L2(Ω0) and

∂̃uε

∂x2
→ 0 s− L2(Ω0); as ε→ 0. (3.11)

(c). Limit of χε.
Let χ be the characteristic function of the representative cell Y ∗. We extend χ periodically on the variable

y1 ∈ R and denote this extension again by χ. Clearly, by construction, χε(x1, x2) = χ(x1/ε, x2), for (x1, x2) ∈
Ωε+.
Consequently, by the Average Theorem and the Lebesgue’s Dominated Convergence Theorem we obtain

χε
ε→0
⇀ θ w∗ − L∞(Ω0), where θ(x2) :=

1
L1

∫ L1

0

χ(s, x2)ds ∀x2 ∈ (−h0, g1). (3.12)

(d) Test functions.
In order to construct appropriate test functions that will allow us to pass the limit in the variational

formulation (3.3), we are going to need to define a partition of the unit interval [0, 1] which is related to the
function hε and which will allow us to analyze in detail the effect of the oscillations at the bottom in the
limit equation. Hence, denote by Nε the largest integer such that NεL2ε

α < 1, where L2 is the period of the
function h. Observe that Nε ∼ L−1

2 ε−α. Let

hn,ε = min
x∈[(n−1)L2εα,nL2εα]

h
( x
εα

)
, n = 1, 2 . . . , Nε (3.13)

and γn,ε ∈ [(n− 1)L2ε
α, nL2ε

α] a point where the minimum (3.13) is attained, that is, h(γn,εεα ) = hn,ε where
γn,ε does not need to be uniquely defined. By extension, let us denote by γ0,ε = 0 and γNε+1,ε = 1.
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Note that the set {γ0,ε, γ1,ε, ..., γNε+1,ε} defines a partition for the unit interval [0, 1]. Moreover, due to
that h(·) is L2−periodic we have that hn,ε = h0 for n = 1, 2 . . . , Nε.

We define now the test functions as follows. With φ ∈ H1(0, 1), we consider ϕε ∈ H1(Ω̃ε) defined as

ϕε(x1, x2) =

{
Xε
n(x1, x2), (x1, x2) ∈ Ω̃ε− ∩Qεn, n = 1, 2, . . .

φ(x1), (x1, x2) ∈ Ω̃ε+ ≡ Ω0
(3.14)

where Qεn is the rectangle Qεn = {(x1, x2) | γn,ε < x1 < γn+1,ε, −h1 < x2 < −h0} and the function Xε
n is the

solution of the problem 
−∂

2Xε
n

∂x2
1

− 1
ε2
∂2Xε

n

∂x2
2

= 0, in Qεn

∂Xε
n

∂N ε
= 0, on ∂Qεn\Γεn

Xε
n(x1, x2) = φ(x1), on Γεn

(3.15)

where Γεn is the base of the rectangle, that is, Γεn = {(x1,−h0) : γn,ε ≤ x1 ≤ γn+1,ε}.
From Lemma 3.1 we have∥∥∥∥∂Xε

n

∂x2
1

∥∥∥∥2

L2(Qεn)

+
1
ε2

∥∥∥∥∂Xε
n

∂x2
2

∥∥∥∥2

L2(Qεn)

≤ Cεα−1‖φ′‖2L2(γn,ε,γn+1,ε)
. (3.16)

Furthermore, since

ϕε(x1, x2)− φ(x1) = ϕε(x1, x2)− ϕε(x1, 0) =
∫ x2

0

∂ϕε

∂x2
(x1, s) ds,

we have by (3.14) and (3.16) that

‖ϕε − φ‖L2(eΩε) → 0 as ε→ 0. (3.17)

(e) Passing to the limit.
We can now pass to the limit in (3.3) by making use of test functions ϕε defined above. For this, we study

the convergence of each term in (3.3).
• First integrand:∫

Ω0

{ ∂̃uε
∂x1

∂ϕε

∂x1
+

1
ε2
∂̃uε

∂x2

∂ϕε

∂x2

}
dx1dx2 →

∫
Ω0

ξ∗(x1, x2)φ′(x1) dx1dx2 as ε→ 0. (3.18)

Thanks to the choice of the test function (3.14) and the convergence (3.11), we easily get (3.18).
• Second integrand: ∫

eΩε−
{ ∂̃uε
∂x1

∂ϕε

∂x1
+

1
ε2
∂̃uε

∂x2

∂ϕε

∂x2

}
dx1dx2 → 0 as ε→ 0. (3.19)

From the definition of ϕε, the Cauchy-Schwarz inequality and the inequality (3.16) we have (3.19).
• Third integrand:∫

eΩε χ
εPεu

ε ϕε dx1dx2 →
∫ 1

0

p u0(x1)φ(x1) dx1 +
∫

Ω0

θ(x2)u0(x1)φ(x1) dx1dx2 as ε→ 0 (3.20)

where the constant p is given by p = 1
L2

∫ L2

0
h(s)ds− h0.

For this, note that we can rewrite the integral of the left side of (3.20) as∫
eΩε χ

εPεu
ε ϕε dx1dx2 =

∫
eΩε χ

ε (Pεuε − u0) ϕε dx1dx2

+
∫

eΩε χ
εu0 (ϕε − φ) dx1dx2 +

∫
eΩε χ

εu0 φdx1dx2.
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From (3.10) and (3.17), we have that the first two terms in the right hand side above go to 0.
Moreover, since∫

eΩε χ
εu0 φdx1dx2 =

∫
eΩε− u0 φdx1dx2 +

∫
Ω0

χεu0 φdx1dx2

=
∫ 1

0

u0 φ
(
h
(x1

εα

)
− h0

)
dx1 +

∫
Ω0

χεu0 φdx1dx2

we get (3.20) from the Average Theorem and (3.12) .
• Fourth integrand: ∫

eΩε f̃ ε ϕ
ε dx1dx2 →

∫ 1

0

f̂(x1)φ(x1) dx1 as ε→ 0. (3.21)

From (3.17) and the hypotheses of the theorem we have (3.21).
Therefore, using the convergences (3.19), (3.18), (3.20) and (3.21), we obtain the following limit variational

formulation: ∫
Ω0

{ξ∗(x1, x2)φ′(x1) + θ(x2)u0(x1)φ(x1)} dx2dx1 +
∫ 1

0

p u0(x1)φ(x1) dx1

=
∫ 1

0

f̂(x1)φ(x1) dx1, ∀φ ∈ H1(0, 1). (3.22)

with p = 1
L2

∫ L2

0
h(s)ds− h0.

At this point the question is how to relate u0 to ξ∗. In the following subsection we will show a equation
for ξ∗.

(f) Relation between ξ∗ and u0.
Let us consider the following families of isomorphisms T εk : Aεk 7→ Y given by

T εk(x1, x2) = (
x1 − εkL1

ε
, x2) (3.23)

where

Aεk = {(x1, x2) ∈ R2 | εkL1 ≤ x1 < εL1(k + 1),−h0 < x2 < g1} and Y = (0, L1)× (−h0, g1).

with k ∈ N. We can considerer extension operators P ∈ L(H1(Y ∗), H1(Y )) ∩ L(L2(Y ∗), L2(Y )),the proof is
done in [3]. Using these operators, the isomorphism (3.23) and the unique solution of the auxiliary problem
(2.9) we define ωεk in (x1, x2) ∈ Aεk by

ωεk(x1, x2) = x1 − ε
(
PX ◦ T εk(x1, x2)

)
= x1 − ε

(
PX(

x1 − εL1k

ε
, x2)

)
.

Observe that for any (x1, x2) ∈ Ω̃ε+ there is k such that (x1, x2) ∈ Aεk. Therefore, the function ωε(x1, x2) =
ωεk(x1, x2) is well defined and ωε ∈ H1(Ω̃ε+). We introduce now the vector ηε = (ηε1, η

ε
2) defined by

ηεi (x1, x2) =
∂ωε

∂xi
(x1, x2), (x1, x2) ∈ Ωε+ (3.24)

where Ωε+ = {(x1, x2) ∈ R2 : 0 < x1 < 1 and − h0 < x2 < g(x1/ε)}.
Taking into account the definition of X if we consider a test function ψ ∈ H1(Ωε+) with ψ = 0 in

neighborhood of the lateral boundaries, we get∫
Ωε+

(
ηε1
∂ψ

∂x1
+ ηε2

1
ε2
∂ψ

∂x2

)
dx1dx2 = 0. (3.25)

Then, with the variational formulation (3.1) and the identity (3.25) we can write:∫
Ω
ε

{ ∂̃uε
∂x1

∂ϕ

∂x1
+

1
ε2
∂̃uε

∂x2

∂ϕ

∂x2
+ χεPεu

εϕ
}
dx1dx2 −

∫
Ωε+

(
ηε1
∂ψ

∂x1
+ ηε2

1
ε2
∂ψ

∂x2

)
dx1dx2
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=
∫

eΩε χ
εf εϕdx1dx2, ∀ϕ ∈ H1(Ωε). (3.26)

We would like to pass to the limit in this expression. For this, we will construct appropriate test functions,
which used in the identity (3.26) allow us to pass to the limit in all the terms.
(g) Limit of ωε and ηε1. From the definition of ωε, we have

ωε → x1, s− L2(Ω0);
∂ωε

∂x2
→ 0, s− L2(Ω0); η̃ε1 ⇀ q, w∗ − L∞(Ω0), (3.27)

where

q(x2) :=
1
L1

∫ L1

0

(
1− ∂̃X

∂y1
(s, x2)

)
χ(s, x2)ds

See [2] for more details.
(h) Function test.

Let φ = φ(x1) ∈ C∞0 (0, 1). We introduce the test function

ψε(x1, x2) =

{
Xε
n(x1, x2), (x1, x2) ∈ Ω̃ε− ∩Qεn, n = 1, 2, . . .

φ(x1)ωε(x1, x2), (x1, x2) ∈ Ω̃ε+ ≡ Ω0,
(3.28)

where ωε is defined above and, as in (3.14), Qεn is the rectangle Qεn = {(x1, x2) | γn,ε < x1 < γn+1,ε, −h1 <
x2 < −h0} and the function Xε

n is the solution of the problem
−∂

2Xε
n

∂x2
1

− 1
ε2
∂2Xε

n

∂x2
2

= 0, in Qεn

∂Xε
n

∂N ε
= 0, on ∂Qεn\Γεn

Xε
n(x1, x2) = φ(x1)ωε(x1,−h0), on Γεn

(3.29)

where Γεn is the base of the rectangle, that is, Γεn = {(x1,−h0) : γn,ε ≤ x1 ≤ γn+1,ε}.
Moreover, we define the function Xε(x1, x2) = Xε

n(x1, x2) as (x1, x2) ∈ Qεn ∩ Ω
ε

−.

From Lemma 3.1 and using the the properties of ωε we have that the function Xε is H1(Ω̃ε−) and satisfies
the following estimate∥∥∥∥∂Xε

∂x1

∥∥∥∥2

L2(eΩε−)

+
1
ε2

∥∥∥∥∂Xε

∂x2

∥∥∥∥2

L2(eΩε−)

≤ C εα−1

∥∥∥∥∥∂
(
φ(x1)ωε(x1,−h0)

)
∂x1

∥∥∥∥∥
2

L2(0,1)

≤ C̃ εα−1. (3.30)

where C̃ denotes a constant independent of ε. Now, we can argue as in (3.17) and we obtain

‖ψε − φPωε‖L2(eΩε) → 0 as ε→ 0. (3.31)

where Pωε is the function defined on the set {(x1, x2) ∈ R2 | x1 ∈ (0, 1), −h1 < x2 < g1} using a extension
operator obtained by reflection in the negative vertical direction along the line x2 = −h0. .Indeed, since

ψε(x1, x2)− φ(x1)Pωε(x1, x2) = ψε(x1, x2)− φ(x1)ωε(x1,−x2 − 2h0)

= ψε(x1, x2)− ψε(x1,−x2 − 2h0) =
∫ x2

−x2−2h0

∂ψε

∂x2
(x1, s)ds for (x1, x2) ∈ Ω̃ε−

we have by (3.28)

‖ψε − φPωε‖L2(eΩε) ≤ C(g, h)
∥∥∥∥∂ψε∂x2

∥∥∥∥2

L2(eΩε) = C(g, h)
∥∥∥∥∂ωε∂x2

φ

∥∥∥∥2

L2(eΩε+)

+ C(g, h)
∥∥∥∥∂Xε

∂x2

∥∥∥∥2

L2(eΩε−)

→ 0 as ε→ 0.

(i) Passing to the limit.
Now we pass to the limit in the equality (3.26) considering the test functions ϕ = ψε and ψ = φuε.
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• First integrand: ∫
eΩε−
{ ∂̃uε
∂x1

∂ψε

∂x1
+

1
ε2
∂̃uε

∂x2

∂ψε

∂x2

}
dx1dx2 → 0 as ε→ 0. (3.32)

Taking account the definition of ψε, the Cauchy-Schwarz inequality and the estimate (3.30) we
obtain the convergence (3.32).

• Second integrand:∫
eΩε+
{ ∂̃uε
∂x1

∂ψε

∂x1
+

1
ε2
∂̃uε

∂x2

∂ψε

∂x2
− ηε1

∂(φuε)
∂x1

− ηε2
1
ε2
∂(φuε)
∂x2

}
dx1dx2

→
∫

Ω0

{
ξ∗
∂φ

∂x1
x1 − q

∂φ

∂x1
u0

}
dx1dx2 as ε→ 0. (3.33)

From the definitions of ηεi and ψε the second integrand reduces to
∫eΩε+

{
∂̃uε

∂x1

∂φ
∂x1

ωε−η̃ε1
∂φ
∂x1

Pεu
ε
}
dx1dx2.

Therefore, using convergences (3.10), (3.11) and (3.27), we have (3.33).
• Third integrand:∫
eΩε χ

εPεu
ε ψε dx1dx2 →

∫ 1

0

p u0(x1)φ(x1)x1 dx1 +
∫

Ω0

θ(x2)u0(x1)φ(x1)x1 dx1dx2, as ε→ 0. (3.34)

Following along the lines of the proof of the convergence (3.20) we have this convergence.
• Fourth integrand: ∫

eΩε f̃ ε ψ
ε dx1dx2 →

∫ 1

0

f̂(x1)φ(x1)x1dx1 as ε→ 0. (3.35)

Using the same computations as those made to derive (3.21) we obtain (3.35)
Now, by the convergences shown in (3.32), (3.33), (3.34) and (3.35), we can pass to the limit in (3.26)

considering the test functions ϕ = ψε and ψ = φuε. More precisely, we have∫
Ω0

{
ξ∗
∂φ

∂x1
x1 − q

∂φ

∂x1
u0

}
dx1dx2 +

∫ 1

0

p u0 φx1 dx1 +
∫

Ω0

θ u0 φx1 dx1dx2 =
∫ 1

0

f̂ φ x1 dx1 ∀φ ∈ C∞0 (0, 1)

(3.36)

where p and q are given by

p =
1
L2

∫ L2

0

h(s)ds− h0, q(x2) =
1
L1

∫ L1

0

(
1− ∂̃X

∂y1
(s, x2)

)
χ(s, x2)ds.

Taking the test function φx1 in (3.22) we obtain∫
Ω0

ξ∗(x1, x2)
∂

∂x1
(φx1)dx2dx1 +

∫ 1

0

p u0(x1)φ(x1)x1 dx1 +
∫

Ω0

θ(x2)u0(x1)φ(x1)x1 dx1dx2

=
∫ 1

0

f̂(x1)φ(x1)x1 dx1 (3.37)

Due to ξ∗ ∂
∂x1

(φx1) = ξ∗x1
∂φ
∂x1

+ ξ∗φ, we can rewrite (3.36) as∫
Ω0

{
ξ∗

∂

∂x1
(φx1)− φξ∗ − q ∂φ

∂x1
u0

}
dx1dx2 +

∫ 1

0

p u0 φx1 dx1 +
∫

Ω0

θ u0 φx1 dx1dx2

=
∫ 1

0

f̂ φ x1 dx1 ∀φ ∈ C∞0 (0, 1). (3.38)

Therefore, it follows from (3.37) and (3.38) that, for all φ ∈ C∞0 (0, 1)

0 =
∫

Ω0

{
φξ∗ + q

∂φ

∂x1
u0

}
dx1dx2 =

∫
Ω0

{
φξ∗ − q ∂u0

∂x1
φ
}
dx1dx2 (3.39)
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With the definition of q̂ given by (2.8) and performing an iterated integration in (3.39) we obtain∫ 1

0

φ(x1)
(∫ g1

−h0

ξ∗(x1, x2)dx2 − q̂
∂u0

∂x1

)
dx1 = 0 ∀φ ∈ C∞0 (0, 1)

So, the equation satisfied by ξ∗ is: ∫ g1

−h0

ξ∗(x1, x2)dx2 = q̂
∂u0

∂x1

The last step is placing this last equality in (3.22). We get∫ 1

0

{
q̂
∂u0

∂x1

∂ϕ

∂x1
+
|Y ∗|
L1

u0 ϕ+ u0 ϕp
}
dx1 =

∫ 1

0

f̂ ϕ dx1, ∀ϕ ∈ H1(0, 1). (3.40)

Hence u0 is the unique solution of (3.40), and we obtain that any convergent subsequence of {uε} tends
to this unique solution. This complete the proof of Theorem 2.2. �
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